
 1/12

Milwaukee School of Engineering
CS391 – Embedded Computer System Design

Final Project Report

Student: Marek Handl

Date: May 20, 2007

Project objectives:

Create a small robot with wheels that would either follow a black line drawn on
the floor or follow a light source. It shall be possible to choose from the two
modes using buttons. Mode of operation shall be displayed on LCD.

Hardware equipment:

- Handy Board kit V1.21 (with MC68HC11E microcontroller)
- LCD - MTC16205D
- Line Tracking Sensor – Tracker Ver 2.0 from Lynxmotion, Inc.
- two Servo Motors – SO5/STD and wheels
- two cadmium sulphide photocells – CTST05
- computer with a serial port

Software equipment:

- JBug11 ver. 4.5.1.0524
- GNU 68HC1x compiler ver. 3.0 – using MSOE package from Dr. Durant
- any kind of text editor for writing the code
- everything developed and tested on Intel platform with MS Windows XP SP2

HW Components description:

Line Tracking Sensor

The sensor is composed of three pairs of infrared LED’s and infrared sensors. The
LED’s are illuminated regularly and if there is a shiny surface underneath, the
reflected IR light will be detected by the sensors. If there is a line (which is
black), no light will get back to the sensor.
Outputs of the sensors go high when on white surface and go down when on black
surface. The sensor needs to be powered by 5V DC.
Connecting to the board – connect the power cable to 0 and +5V, connect the data
cable to digital ports 13, 14 and 15.

 2/12

CdS Photocells
Cadmium sulphide photocell changes its resistance when exposed to visible light.
It is possible to connect a photocell directly to handy board’s analog inputs
without any additional power source. When reading from the port, value between
0 and 255 is returned; higher value means less light.
Connecting to the board – connect the left sensor to analog port 2 and the right
sensor to analog port 3.

LCD

Providing the LCD is connected to the board using standard pins, it is necessary
to switch to single chip mode before each LCD read/write operation. To be able to
operate with LCD in the single chip mode, the controlling routine has to be stored
in zero page memory (extended RAM is not accessible in single chip mode). Once
the character has been written to the LCD, it is possible to switch back to
extended mode.

Motors

Only on/off state of motors is controlled in this program. No pulse width
modulation has been used.
Connecting to the board – connect the left motor to motor 3 pins and the right
motor to motor 2 pins.

Program description:

After necessary initialization the program gets into a never ending loop, which
checks for a button press in each iteration. If no button was pushed, the board
stays in the same state (either does nothing or continues in previous action).

When in menu (no-action) state, it is possible to choose from line tracking or
follow light mode using the STOP button. To start the action, the START button
needs to be pressed.

When in action state (either line tracking or following light), the STOP button can
be used to stop the robot and return to the menu.

Line Tracking – all three sensors are read (left, center and right) and motors are
switched on/off accordingly (left sensor sees black, left motor is switched off and
right motor is switched on etc.)
Following Light – values from both sensors are read and compared. If the left
sensor receives more light (value is lower than from the right sensor), left motor
is switched off and right motor is switched on and vice versa.

 3/12

Design decisions:

Visible light sensors are connected to analog ports

It is necessary to compare the two values (from the right and from the left sensor).
The value on input is converted to 0-255 range using A/D conversion. A two-state
value (a zero or a one), which would be returned from a digital port, would not be
enough.

Line tracking sensors are connected to digital ports
The sensors can return only 2 values (either IR light was reflected or was not).
There is no point in connecting these sensors to analog ports. It is possible to
configure the Handy Board to use the analog ports as digital inputs, but this way it
is easier.

LCD operating routine in zero page memory
Necessary because of the single chip mode. It is not possible to operate the LCD
in extended chip mode, unless additional chips and wiring are used.

Using never ending checking for button press
It would be possible to use interrupts, but presented solution is simpler and
equally effective.

No pulse width modulation for motors
All required tasks can be performed using on/off state only. There is no need for
using pulse width modulation.

 4/12

Source code:

* *** ******
* REGISTERS *************************************** ******
* *** ******
; addresses for single chip mode - index addressing will be used
sPORTA = 0x00
sPORTB = 0x04
sPORTC = 0x03
sHPRIO = 0x3C
sDDRC = 0x07
sSPCR = 0x28

; addresses for extended mode - direct addressing will be used
PORTA = 0x1000
PORTB = 0x1004
PORTC = 0x1003
HPRIO = 0x103C ; Highest Priority Interrupt and misc.
DDRC = 0x1007 ; Data Direction register for port C

SPCR = 0x1028 ; SPI control Register
SPSR = 0x1029
SPDR = 0x102A ; SCI Data Register
BAUD = 0x102B ; SCI Baud Rate Control Register
SCCR1 = 0x102C ; SCI Control Register 1
SCCR2 = 0x102D ; SCI Control Register 2
SCSR = 0x102E ; SCI Status Register
SCDR = 0x102F ; SCI Data Register

MOTORS = 0x7000 ; motors output
DIGIN = 0x7FFF ; Digital input

* *** ******
* CONSTANTS *************************************** ******
* *** ******
lefton = 0x80 ; left motor on
righton = 0x40 ; right motor on
bothon = 0xC0 ; left and right motor on

startbt = 0b10000000 ; start button, active in low
stopbt = 0b01000000 ; stop button, active in low

option = 0x1039 ; A/D setup
ADPU = (1 << 7) ; A/D setup
adctl = 0x1030 ; A/D control register
adr1 = 0x1031 ; result from analog port 0
adr2 = 0x1032 ; result from analog port 1
adr3 = 0x1033 ; result from analog port 2
adr4 = 0x1034 ; result from analog port 3

single = 0b00100000 ; single chip mode

 5/12

TDRE = 0x80 ; Transmit Data Register Empty
TRENA = 0x0C ; Transmit, Receive ENAble
RDRF = 0x20 ; Receive Data Register Full
PD_WOM = 0x20
brate = 0xB0 ; Baud Rate

lcd_routine = 0x10 ; adress of lcd routine (it's in zero page memory because of single chip mode)
lcd_temp = 0x09 ; address of a temp variable in single chip mode

state_lt = 1 ; line tracker
state_fl = 2 ; follow light

* *** ******
* DATA VARIABLES ********************************** ******
* *** ******
.section .bss
state: .rmb 1 ; 0-menu, 1-line tracker, 2-follow light
menu_item: .rmb 1 ; 0-line tracker, 1-follow light
motors_state: .rmb 1
pointer: .rmb 2 ; pointer to a charecter being displayed
count: .rmb 1 ; how many characters have been displayed so far
temp: .rmb 1 ; used for counting

* *** ******
* PREDEFINED STRINGS ****************************** ******
* *** ******
.section .rodata ; strings are null terminated
menu_header: .asciz "----- MENU -----"
menu_lt: .asciz "1) Line Tracker"
menu_fl: .asciz "2) Follow Light"

* *** ******
* PROGRAM *** ******
* *** ******
.section .text
.global _start

_start:
 ; initialization
 lds #_stack
 clr MOTORS
 clr state
 clr motors_state
 clr count
 clr menu_item

 ; A/D initialization
 ldaa option
 oraa #ADPU ; power up A/D system
 staa option
 ldaa #0b00110000 ; scan of four ports of PE4

 6/12

 staa adctl

 ; lcd initialization
 ldx #0x1000
 bclr sSPCR, X PD_WOM

 ldaa #brate
 staa BAUD ; set up baud rate
 ldaa #TRENA
 staa SCCR2

 jsr copy_routine ; copy LCD writing routine to zero page

 clra ; command
 ldab #0x0C ; Display On / Cursor Off / Flash Off
 jsr lcd_routine

 clra ; command
 ldab #0x38 ; two line display
 jsr lcd_routine

 jsr clear
 ldaa #1
 staa menu_item
 jsr change_menu

 ; ** ***
 ; loop checking for a pressed button
loop:
 ldaa DIGIN ; read digital input
 psha
 anda #stopbt ; if equals zero, stop button was pushed
 beq stop_bt
 pula
 anda #startbt ; if equals zero, start button was pushed
 beq start_bt

 ; no button pushed, keep the state
 ldaa state
 beq loop ; state=0 means menu - wait for button press
 cmpa #state_lt
 beq work_lt ; do line tracker
 cmpa #state_fl
 beq work_fl ; do follow light
 bra loop ; unreachable code, just in case

stop_bt:
 ; stop button pushed
 ldaa DIGIN
 anda #stopbt
 beq stop_bt ; wait for button release

 7/12

 ldaa state
 bne 1f ; state=0 means menu
 jsr change_menu
 bra loop
1:

; stop action
 clr MOTORS ; stop motors
 clr state ; menu state
 jsr change_menu
 bra loop

start_bt:
 ; start button pushed
 ldaa DIGIN
 anda #startbt
 beq start_bt ; wait for button release

 ldaa state
 beq 1f ; state=0 means menu - start working
 bra loop ; pushing start button while working doesn't change a thing

1:
 ; start action (either line tracker or follow light)
 jsr clear ; clear display
 ldaa #bothon
 staa MOTORS ; switch both motors on

 ldaa menu_item
 inca
 staa state
 deca
 beq start_lt ; menu_item=0 means line tracker

 ; start follow light
 ldx #menu_fl
 stx pointer
 jsr print
 jsr linetracker
 bra loop
start_lt:
 ; start line tracker
 ldx #menu_lt
 stx pointer
 jsr print
 jsr followlight
 bra loop

work_lt:
 ; do line tracker
 jsr linetracker
 bra loop
work_fl:

 8/12

 ; do follow light
 jsr followlight
 bra loop

* ***************************************
* CHANGE MENU
* display "Menu" in upper row and menu item in lower row of LCD
* called after STOP button was pushed
* ***************************************
change_menu:
 jsr clear
 ldx #menu_header
 stx pointer
 jsr print
 ;jsr new_line ; new line is automatically appended, because the first line is full
 ldaa menu_item
 beq 1f
 dec menu_item ; change menu_item to zero (line tracker)
 ldx #menu_lt
 stx pointer
 jsr print
 rts
1:
 inc menu_item ; change menu_item to one (follow light)
 ldx #menu_fl
 stx pointer
 jsr print
 rts

* ***************************************
* LINE TRACKER
* follows a black line drawn on the floor
* reads from Line Tracker Sensor and controls motors accordingly
* ***************************************
linetracker:

 ldd DIGIN ; load to A from digital input
 anda #0b00111000 ; bit5 = Left, bit4 = Center, bit3 = Right

 cmpa #0b00111000 ; all white
 bne left

 ; all white
 ldab motors_state ; previous state of motors
 cmpb #0b00101000 ; both motors on
 bne 1f
 ldab #lefton ; switch off the right motor
 bra done
1:
 ldab motors_state ; both motors off

 9/12

 bne 2f
 ldab #bothon ; switch on both motors
2:
 ; one motor was on, keep moving in the same direction
 bra done

left:
 ; check left sensor
 ldab motors_state
 anda #0b00101000 ; ignore center sensor
 cmpa #0 ; left and right both black ... keep moving in the same direction
 beq done

 clrb ; clear B - temporary place for motor directions
 psha
 anda #0b00100000 ; left sensor
 beq right
 orab #lefton ; turn on left motor

right:
 ; check right sensor
 pula
 anda #0b00001000 ; right white
 beq done
 orab #righton ; turn on right motor

done:
 ; set up motors
 stab MOTORS
 stab motors_state ; remember motors directions
 rts

* *** ***
* FOLLOW LIGHT
* follows a light source
* reads from two photocells, which are mounted on sides of the bot
* goes to that direction where more light comes from
* *** **
followlight:
 ldaa adr3 ; left sensor
 cmpa adr4 ; compare it to right sensor value
 blo goright ; branch if lower
 bgt goleft ; branch if greater

 ; same value - go straight
 ldaa #bothon
 bra 9f

goleft:
 ; going to the left

 10/12

 ldaa #righton
 bra 9f

goright:
 ; going to the right
 ldaa #lefton

9:
 staa MOTORS
 jsr wait
 rts

wait:
 ldx #0xFFFF
1:
 dex
 bne 1b
 rts

* *** **
* LCD FUNCTIONS
* *** **

* *** ******
* PRINT A STRING TO LCD
* Starting address of the string in "pointer"
* String is terminated with a null character
* *** ******
print:
 ldx pointer

 ldaa #0x02 ; print command
 ldab 0, X ; character to be displayed
 beq 9f ; string is terminated with a "00" character

 inx
 stx pointer
 jsr lcd_routine ; print the character to the lcd display

 inc count
 ldaa count
 cmpa #16 ; first line is full
 bne 8f
 jsr nl_fill

8: bra print
9: rts

* *** ******
* NEW LINE Character - move to the second line
* uses "temp" as a temp variable

 11/12

* *** ******
new_line:
 ldaa #16
 suba count ; add spaces to the end of the line
 adda #24
 staa temp
 bra 1f
nl_fill:
 ldaa #24 ; number of character between the end of the 1st line and the beginning of the 2nd line
 staa temp
1:
 ldaa #0x02 ; print command
 ldab #32 ; space character
 jsr lcd_routine
 dec temp
 bne 1b
 clr count
 rts

* *** ******
* CLEAR DISPLAY
* Moves cursor to the beginning too
* *** ******
clear:
 clra
 ldab #0x01 ; Clear Display
 jsr lcd_routine
 clra
 ldab #0x02
 jsr lcd_routine ; Move cursor home
 clr count
 rts

* *** ******
* RESET CURSOR
* Moves cursor to the beginning of the 1st line
* *** ******
home:
 clra
 ldab #0x02 ; move cursor to beginning of 1st line
 jsr lcd_routine
 clr count
 rts

* *** ******
* COPY LCD ROUTINE to zero page memory
* necessary for single chip mode
* *** ******
copy_routine:
 ldx #lcd_print ; address in extended RAM
 ldy #lcd_routine ; target address in zero page memory

 12/12

copy_loop:
 ldaa 0,x
 staa 0,y
 inx
 iny
 cpx #routine_end
 bne copy_loop
 rts

* *** ******
* LCD ROUTINE - prints out a character
* command is in acc A
* character is in acc B
* *** ******
lcd_print:
 sei
 staa lcd_temp ; save command value

 ldx #0x1000
 bclr sHPRIO, X 0b00100000 ; switch to single chip mode
 bclr sPORTA, X 0b00010000 ; turn off LCD E line

 clr sDDRC, X ; port C as input

lcd_busy:
 ldaa #1
 staa sPORTB, X ; read operation from LCD

 bset sPORTA, X 0b00010000 ; frob LCD on
 ldaa sPORTC, X ; get status
 bclr sPORTA, X 0b00010000 ; frob LCD off

 anda #0x80 ; busy flag
 bne lcd_busy ; wait for LCD ready

 ldaa #0xFF
 staa sDDRC, X ; port C as output
 ldaa lcd_temp
 staa sPORTB, X ; command (only the 2 LSB are important - R/W and RS bits)
 stab sPORTC, X ; data (bits DB0-DB7)

 bset sPORTA, X 0b00010000
 bclr sPORTA, X 0b00010000 ; frob LCD
 bset sHPRIO, X 0b00100000 ; switch back to extended mode

 cli
 rts

routine_end: nop ; used just as a pointer to the end of the routine

